Dipole Correlation of the Electronic Structures of the Conformations of Water Molecule Evolving Through the Normal Modes of Vibrations Between Angular (C2v) to Linear (Dμh) Shapes

نویسندگان

  • Dulal C. Ghosh
  • Arindam Chakraborty
چکیده

In order to settle the issue of equivalence or non-equivalence of the two lone pairs of electrons on oxygen atom in water molecule, a quantum chemical study of the dipole correlation of the electronic structure of the molecule as a function of conformations generated following the normal modes of vibrations between the two extreme conformations, C2v (∠HOH at 90o) and D∝h (∠HOH at 180o), including the equilibrium one, has been performed. The study invokes quantum mechanical partitioning of molecular dipoles into bond moment and lone pair moment and localization of delocalized canonical molecular orbitals, CMO’s into localized molecular orbitals, LMO’s. An earlier suggestion, on the basis of photoelectron spectroscopy, that one lone pair is in p-type and the other is in s-type orbital of O atom of water molecule at its equilibrium shape, and also the qualitative “Squirrel Ears” structure are brought under serious scrutiny. A large number of conformations are generated and the charge density matrix, dipole moment of each conformation is computed in terms of the generated canonical molecular orbitals, CMO’s and then Sinanoğlu’s localization method is invoked to localize the CMO’s of each conformation and the quantum mechanical hybridizations of all the bonds and lone pairs on O center are evaluated in terms of the localized molecular orbitals. Computed data demonstrate that the electronic structures i.e. two bond pairs and two lone pairs and its hybridization status of all conformations of water molecule are straightforward in terms of the LMO’s. It is further revealed that the pattern of orbital hybridization changes continuously as a function of evolution of molecular shape. The close analysis of the generated LMO’s reveals that one lone pair is accommodated in a pure p orbital and another lone pair is in a hybrid orbital in almost all conformations. One more important result of the Int. J. Mol. Sci. 2006, 7 72 present study is that, with the physical process of structural evolution from close angular shape to the linear transition state, the length of the σ (O–H) decreases and its strength increases as a monotone function of reaction coordinates. The bond length is shortest and the strength is largest at the transition state of structural inversion. Result of structural effect of the present study during the evolution of molecular conformations is quite consistent with the result of a very refined calculation that one physically significant feature of force field that the stretching force constants at the linear geometry are considerably larger than their equilibrium counter parts. The variation of bond strength and the hybridization of s and p orbitals on O atom center to form the σ (O–H) bond as a function of evolution of conformations is in accordance with Coulson’s prediction. The total dipole moment of all conformations is partitioned into the contribution from bonds and lone pairs and correlated in terms of the computed hybridization in lone pairs. The analysis of the variation of dipole moment as a function of angular to linear structural evolution reveals that the dipole moment of H2O molecule is not due to the bond moments only but a significant contribution comes from a lone pair. It is strongly established that the dipole moment of water molecule at and around the equilibrium geometry is not due to the bond moments only and the major part of the molecular dipole comes from the contribution of lone pair electrons. This necessitates the accommodation of a lone pair of electrons in a hybrid orbital on O atom. The computed LMO’s webbed with partitioned molecular dipole reveal that one lone pair is in a pure ptype orbital and the other lone pair is in a hybrid of s and p, and not in a pure s type orbital as suggested on the basis of photoelectron spectra. The possibility of qualitative “Squirrel Ears” structure is also ruled out. The problem of equivalence or non-equivalence of the two lone pairs of the O atom in water seems to have been finally resolved by the present quantum chemical calculation. An attempt of locating the origin of barrier to the physical process of inversion of water molecule is made in terms of energy partitioning method. It is found that the dipole can be used as a descriptor for the elucidation of electronic structure of molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid-DFT study and NBO interpretations of the conformational behavior of 1,2-dihalodisilanes

Hybrid-density functional theory (B3LYP/Def2-TZVPP) based method and NBOinterpretation were used to investigate the conformational behavior of 1,2-dihalodisilanes[halo=F (1), Cl (2), Br (3), I (4)]. The B3LYP/Def2-TZVPP results showed that the anticonformations of compounds 1-4 are more stable than their corresponding gaucheconformations. The stability of the anti conformation compared to the g...

متن کامل

Electronic Structure, Biological Activity, Natural Bonding Orbital (NBO) and Non-Linear Optical Properties (NLO) of Poly-Functions Thiazolo [3,2-a]Pyridine Derivatives. DFT Approach

The optimized structures of studied compounds 23-28 are non planner with the two phenyl at C3 and C9 are out of the molecular plane of thiazolo[3,2-a]pyridine as indicated from a dihedral angles of 710 and 1160 respectively, using DFT-B3LYP method with 6-311G(d,p) as basis set. The natural bonding orbital (NBO) analysis of the parent molecule 23 have been analyzed in terms of the hybridization ...

متن کامل

Size Evolution Study of the Electronic and Magnetic Properties of MgO Nanoclusters

Magnesium oxide nanoclusters have attracted much attention due to their potential applications to catalysis and novel optoelectronic materials. In the present study, we have studied the electronic and magnetic properties of the stoichiometric magnesium oxide nanoclusters (MgO)n  for n = 2-20. Although the binding energy increases with the size of the cluster, it  re...

متن کامل

A Computational Study to Find the Vibrational Modes Connected with Specific Molecular Structures of Calculated Compound

The purpose of this research is to provide a deeper understanding of the planar high- symmetry configuration instability. In the ideal case, the distortion corresponds to the movements of nuclei along normal modes that belong to non-totally symmetric irreps of the high symmertry (HS) point group of molecule. The analysis of the structural distortion from the HS nuclear arrangements of the JT ac...

متن کامل

Theoretical insights of magnetizability and solvent effect on the electronic properties of CoB8- molecule

Equilibrium geometry, electronic structures, and vibrational modes of CoB8- were investigated in the PBEPBE/6-311+G(d,p) level of theory. The nucleus independent chemical shift (NICS) analysis and magnetizability values were used for studying of aromaticity in CoB8-. The effects of different solvents on the structure and frontier orbital energies were calculated using the polarizable continuum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006